Genus fields of abelian extensions of rational congruence function fields
نویسندگان
چکیده
منابع مشابه
Class numbers of some abelian extensions of rational function fields
Let P be a monic irreducible polynomial. In this paper we generalize the determinant formula for h(K Pn) of Bae and Kang and the formula for h−(KPn ) of Jung and Ahn to any subfields K of the cyclotomic function field KPn . By using these formulas, we calculate the class numbers h −(K), h(K+) of all subfields K of KP when q and deg(P ) are small.
متن کاملAbelian Extensions of Arbitrary Fields
Let k be an Hilbertian field, i.e. a field for which Hilbert's irreducibility theorem holds (cf. [1, 5]). It is obvious that the degree of the algebraic closure k of k is infinite with respect to k. It is not obvious that the same is true for the maximal p-extension of k, p a prime number. Let A be a finite abelian group. The question whether there exists a Galoisian extension l/k with Galois g...
متن کاملSelmer Groups of Abelian Varieties in Extensions of Function Fields
Let k be a field of characteristic q, C a smooth connected curve defined over k with function field K := k(C). Let A/K be a non constant abelian variety defined over K of dimension d. We assume that q = 0 or > 2d + 1. Let p 6= q be a prime number and C → C a finite geometrically Galois and étale cover defined over k with function field K ′ := k(C). Let (τ , B) be the K /k-trace of A/K. We give ...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولElliptic Congruence Function Fields
Recently, the well-known Diie-Hellman key exchange protocol was extended to real quadratic congruence function elds in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals. This set does not possess a group structure, but instead exhibits a so-called infrastructure. The techniques are the same as in the protocol based on real quadratic number elds. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2013
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2012.09.006